Aproveitando a Inteligência Artificial (IA) na Pesquisa em Inteligência Competitiva (IC)

Autores

DOI:

https://doi.org/10.24883/eagleSustainable.v15i.469

Palavras-chave:

Inteligência Artificial (IA), Modelos de Linguagem de Grande Escala (LLMs), Pesquisa Acadêmica, Inteligência Competitiva (IC), Modelos GPT

Resumo

Objetivo: O rápido avanço da inteligência artificial (IA) tem influenciado significativamente a pesquisa e as práticas acadêmicas, levando universidades a elaborarem diretrizes para o uso de modelos de linguagem de grande escala (LLMs) por estudantes. No entanto, ainda há um debate em andamento entre periódicos e conferências acadêmicas sobre a necessidade de declarar o uso da IA na elaboração de manuscritos. Este artigo tem como objetivo explorar diferentes perspectivas sobre o uso de LLMs na pesquisa científica, especialmente no contexto da inteligência competitiva (IC), e oferecer diretrizes para pesquisadores da área sobre como utilizar eficazmente ferramentas de IA, como os modelos GPT.

Método: O estudo realiza uma revisão abrangente da literatura existente sobre a integração da IA na pesquisa acadêmica, com foco específico nas capacidades de modelos generativos, como o ChatGPT-4, o Scholar GPT e o Consensus GPT. Esses modelos, desenvolvidos pela OpenAI, são avaliados quanto à sua utilidade em diversas etapas do processo de pesquisa, incluindo a revisão de literatura, a análise qualitativa e a análise de dados. A análise destaca que a qualidade dos resultados gerados por IA depende diretamente da especificidade das instruções fornecidas pelo usuário.

Resultados: Embora os LLMs tenham demonstrado grande potencial para aprimorar revisões de literatura, pesquisas qualitativas e análises de dados, o estudo identifica que suas capacidades completas na pesquisa acadêmica ainda são pouco exploradas. A pesquisa evidencia tanto as preocupações com uma possível “contaminação” dos trabalhos científicos pelo uso da IA, quanto os benefícios que esses modelos oferecem, especialmente quando utilizados de forma estratégica.

Conclusões: O artigo apresenta um guia estruturado para pesquisadores da área de negócios, com ênfase especial em profissionais que atuam com inteligência competitiva, sobre como integrar eficazmente modelos de linguagem baseados em IA ao longo do processo de pesquisa. Os achados ressaltam a importância da especificidade dos comandos e oferecem recomendações práticas para o uso estratégico dos LLMs, visando aumentar a eficiência da pesquisa e a qualidade dos resultados.

Downloads

Não há dados estatísticos.

Biografia do Autor

Joseph F. Hair, University of South Alabama, Alabama

Dr. Joseph F. Hair is an American author, consultant, and professor. He currently serves as a Distinguished Professor of Marketing, holds the Cleverdon Chair of Business, and is the Director of the PhD program at the Mitchell College of Business, University of South Alabama. Previously, he held the positions of Senior Scholar for the DBA program at the Michael J. Coles College of Business at Kennesaw State University, and the Copeland Endowed Chair of Entrepreneurship at the Ourso College of Business Administration, Louisiana State University.

Dr. Hair has authored over 100 editions of his books, including Multivariate Data Analysis (8th edition, 2019), which has been cited over 201,000 times, Essentials of Business Research Methods (5th edition, 2023), A Primer on Partial Least Squares Structural Equation Modeling – PLS (3rd edition, 2022), Essentials of Marketing Research (6th edition, 2024), and MKTG (14th edition, 2024). He is renowned for his contributions to marketing research and multivariate data analysis.

From 2018 to 2024, Clarivate Analytics recognized Dr. Hair as part of the top 1% of all Business and Economics professors worldwide for his impactful research and contributions to the field.

Misty Sabol, Mitchell College of Business, United States

Dr. Misty Sabol is an experienced instructor specializing in Marketing, Supply Chain Management, and Analytics. Her research focuses on diverse areas such as statistics and methodologies, innovation, creativity, and ecosystems. Dr. Sabol holds a Doctor of Business Administration from the University of Dallas, a Master’s in Management from the University of Alabama, and a Bachelor’s in Business Administration from the University of New Orleans.

Referências

Atkinson, C. F. (2024). Cheap, quick, and rigorous: Artificial intelligence and the systematic literature review. Social Science Computer Review, 42(2), 376-393. DOI: https://doi.org/10.1177/08944393231196281

Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D., Wilie, B., ... & Fung, P. (2023). A multitask, multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023. DOI: https://doi.org/10.18653/v1/2023.ijcnlp-main.45

Bostrom, N. and Yudkowsky, E. (2018), “The ethics of artificial intelligence”, in Artificial Intelligence Safety and Security, Chapman and Hall/CRC, pp. 57-69. DOI: https://doi.org/10.1201/9781351251389-4

Boyd, A. (2023, October). Higher Ed Grapples with AI's Impact. Voltedu. Retrieved from https://voltedu.com/education-administration/higher-ed-grapples-with-ais-impact/

Brand, J., Israeli, A., & Ngwe, D. (2023). Using gpt for market research. Available at SSRN 4395751. DOI: https://doi.org/10.2139/ssrn.4395751

Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., ... & Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606-659. DOI: https://doi.org/10.1111/1748-8583.12524

Burger, B., Kanbach, D. K., Kraus, S., Breier, M., & Corvello, V. (2023). On the use of AI-based tools like ChatGPT to support management research. European Journal of Innovation Management, 26(7), 233-241. DOI: https://doi.org/10.1108/EJIM-02-2023-0156

Butson, R., & Spronken-Smith, R. (2024). AI and its implications for research in higher education: a critical dialogue. Higher Education Research & Development, 43(3), 563-577. DOI: https://doi.org/10.1080/07294360.2023.2280200

Chen, Y., Andiappan, M., Jenkin, T., & Ovchinnikov, A. (2023). A Manager and an AI Walk into a Bar: Does ChatGPT Make Biased Decisions Like We Do?. Available at SSRN 4380365. DOI: https://doi.org/10.2139/ssrn.4380365

Ciechanowski, L., Jemielniak, D., & Gloor, P. A. (2020). TUTORIAL: AI research without coding: The art of fighting without fighting: Data science for qualitative researchers. Journal of Business Research, 117, 322-330. DOI: https://doi.org/10.1016/j.jbusres.2020.06.012

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.

Dwivedi, Y.K., Kshetri, N., Hughes, L., Slade, E.L., Jeyaraj, A., Kar, A.K., Baabdullah, A.M., Koohang, A., Raghavan, V., Ahuja, V., Albanna, A., Albashrawi, M.A., Al-Busaidi, A.S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter, L., Chowdhury, S., Crick, T., Cunningham, S.W., Davies, G.H., Davison, R.M., De, R., Dennehy, D., Duan, Y., Dubey, R., Dwivedi, R., Edwards, J.S., Flavian, C., Gauld, R., Grover, V., Hu, M.C., Janssen, M., Jones, P., Junglas, I., Khorana, S., Kraus, S., Larsen, K.R., Latreille, P., Laumer, S., Malik, T.F., Mardani, A., Mariani, M., Mithas, S., Mogaji, E., Horn Nord, J., O’Connor, S., Okumus, F., Pagani, M., Pandey, N., Papagiannidis, S., Pappas, I.O., Pathak, N., Pries-Heje, I., Raman, R., Rana, N.P., Volker Rehm, S., Ribeiro-Navarrete, S., Richter, A., Rowe, F., Sarker, S., Carsten Stahl, B., Tiwari, M.K., van der Aalst, W., Venkatesh, V., Viglia, G., Wade, M., Walton, P., Wirtz, J. and Wright, R. (2023), “‘So what if ChatGPT wrote it?’ Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy”, International Journal of Information Management, Vol. 71, 102642, doi: 10.1016/j.ijinfomgt.2023.102642. DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642

Garcia, M. B. (2024). Using AI tools in writing peer review reports: should academic journals embrace the use of ChatGPT?. Annals of biomedical engineering, 52(2), 139-140. DOI: https://doi.org/10.1007/s10439-023-03299-7

Giray, L. (2023). Prompt engineering with ChatGPT: a guide for academic writers. Annals of biomedical engineering, 51(12), 2629-2633. DOI: https://doi.org/10.1007/s10439-023-03272-4

Girotra, K., Meincke, L., Terwiesch, C., & Ulrich, K. T. (2023). Ideas are dimes a dozen: Large language models for idea generation in innovation. Available at SSRN 4526071. DOI: https://doi.org/10.2139/ssrn.4526071

Golan, R., Reddy, R., Muthigi, A., & Ramasamy, R. (2023). Artificial intelligence in academic writing: a paradigm-shifting technological advance. Nature reviews urology, 20(6), 327-328. DOI: https://doi.org/10.1038/s41585-023-00746-x

Gray, A. (2024). ChatGPT" contamination": estimating the prevalence of LLMs in the scholarly literature. arXiv preprint arXiv:2403.16887.

Grossmann, I., Feinberg, M., Parker, D. C., Christakis, N. A., Tetlock, P. E., & Cunningham, W. A. (2023). AI and the transformation of social science research. Science, 380(6650), 1108-1109. DOI: https://doi.org/10.1126/science.adi1778

Hamilton, L., Elliott, D., Quick, A., Smith, S., & Choplin, V. (2023). Exploring the use of AI in qualitative analysis: A comparative study of guaranteed income data. International journal of qualitative methods, 22, 16094069231201504. DOI: https://doi.org/10.1177/16094069231201504

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis, (8th ed.). London: U.K., Cengage Learning.

Hassani, H., & Silva, E. S. (2023). The role of ChatGPT in data science: how ai-assisted conversational interfaces are revolutionizing the field. Big data and cognitive computing, 7(2), 62. DOI: https://doi.org/10.3390/bdcc7020062

Khalifa, M., & Albadawy, M. (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. Computer Methods and Programs in Biomedicine Update, 100145. DOI: https://doi.org/10.1016/j.cmpbup.2024.100145

Kesting, P. (2024). How artificial intelligence will revolutionize management studies: a Savagean perspective. Scandinavian Journal of Management, 40(2), 101330. DOI: https://doi.org/10.1016/j.scaman.2024.101330

Khlaif, Z. N., Mousa, A., Hattab, M. K., Itmazi, J., Hassan, A. A., Sanmugam, M., & Ayyoub, A. (2023). The potential and concerns of using AI in scientific research: ChatGPT performance evaluation. JMIR Medical Education, 9, e47049. DOI: https://doi.org/10.2196/47049

Knopp, M. I., Warm, E. J., Weber, D., Kelleher, M., & others. (2023). AI-Enabled Medical Education: Threads of Change, Promising Futures, and Risky Realities Across Four Potential Future Worlds. JMIR Medical Education, 2023(1). https://mededu.jmir.org/2023/1/e50373 DOI: https://doi.org/10.2196/50373

Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and libraries?. Library hi tech news, 40(3), 26-29. DOI: https://doi.org/10.1108/LHTN-01-2023-0009

Meskó, B. (2023). Prompt engineering as an important emerging skill for medical professionals: tutorial. Journal of Medical Internet Research, 25, e50638. DOI: https://doi.org/10.2196/50638

Miller, J. P. (2012). Millennium Intelligence: Understanding and Conducting Competitive Intelligence in the Digital Age. Journal of Sustainable Competitive Intelligence, 2(2). https://doi.org/10.24883/IberoamericanIC.v2i2.42

Mouton, J., & Marais, H. C. (1988). Basic concepts in the methodology of the social sciences. Hsrc Press.

Nguyen-Trung, K., Saeri, A. K., & Kaufman, S. (2023). Applying ChatGPT and AI-powered tools to accelerate evidence reviews. DOI: 10.31219/osf.io/pcrqf DOI: https://doi.org/10.31219/osf.io/pcrqf

OpenAI. (2024). ChatGPT (4.0 version) [Large multimodal model]. https://chat.openai.com/chat

Park, Y. J., Kaplan, D., Ren, Z., Hsu, C. W., Li, C., Xu, H., ... & Li, J. (2024). Can ChatGPT be used to generate scientific hypotheses?. Journal of Materiomics, 10(3), 578-584. DOI: https://doi.org/10.1016/j.jmat.2023.08.007

Perkins, M., & Roe, J. (2023). Academic publisher guidelines on AI usage: A ChatGPT supported thematic analysis. F1000Research, 12. DOI: https://doi.org/10.12688/f1000research.142411.1

Rahman, M., Terano, HJR, Rahman, N., Salamzadeh, A., Rahaman, S.(2023). ChatGPT and Academic Research: A Review and Recommendations Based on Practical Examples. Journal of Education, Management and Development Studies, 3(1), 1-12. DOI: https://doi.org/10.52631/jemds.v3i1.175

Rane, N. L., Tawde, A., Choudhary, S. P., & Rane, J. (2023). Contribution and performance of ChatGPT and other Large Language Models (LLM) for scientific and research advancements: a double-edged sword. International Research Journal of Modernization in Engineering Technology and Science, 5(10), 875-899.

Rocha, I., & Lopes, L. L. S. (2023). The Process of Implementing Competitive Intelligence in a Service Organization. Journal of Sustainable Competitive Intelligence, 13, e0438. https://doi.org/10.24883/IberoamericanIC.v13i.438 DOI: https://doi.org/10.24883/IberoamericanIC.v13i.438

Sabol, M., Hair, J., Cepeda, G., Roldán, J. L., & Chong, A. Y. L. (2023). PLS-SEM in information systems: seizing the opportunity and marching ahead full speed to adopt methodological updates. Industrial Management & Data Systems, 123(12), 2997-3017. DOI: https://doi.org/10.1108/IMDS-07-2023-0429

Sarstedt, M., Adler, S. J., Rau, L., & Schmitt, B. (2024). Using large language models to generate silicon samples in consumer and marketing research: Challenges, opportunities, and guidelines. Psychology & Marketing. DOI: https://doi.org/10.1002/mar.21982

Scopus. (2024). CiteScore metrics for Top 10% Journals: 5.3. Retrieved from https://www.scopus.com/sources.uri

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339. DOI: https://doi.org/10.1016/j.jbusres.2019.07.039

Vaid, S., Puntoni, S., & Khodr, A. (2023). Artificial intelligence and empirical consumer research: A topic modeling analysis. Journal of Business Research, 166, 114110. DOI: https://doi.org/10.1016/j.jbusres.2023.114110

Van Dis, E. A., Bollen, J., Zuidema, W., Van Rooij, R., & Bockting, C. L. (2023). ChatGPT: five priorities for research. Nature, 614(7947), 224-226. DOI: https://doi.org/10.1038/d41586-023-00288-7

Wang, M., Wang, M., Xu, X., Yang, L., Cai, D., & Yin, M. (2023). Unleashing ChatGPT's Power: A Case Study on Optimizing Information Retrieval in Flipped Classrooms via Prompt Engineering. IEEE Transactions on Learning Technologies. DOI: https://doi.org/10.1109/TLT.2023.3324714

Downloads

Publicado

2024-10-20

Como Citar

Hair, J. F., & Sabol, M. (2024). Aproveitando a Inteligência Artificial (IA) na Pesquisa em Inteligência Competitiva (IC). Revista Inteligência Competitiva, 15(00), e0469. https://doi.org/10.24883/eagleSustainable.v15i.469